TrustVote: On Elections We Trust with Distributed
Ledgers and Smart Contracts

Majd Soud, Sigurdur Helgason, Gisli Hjdlmtysson, Mohammad Hamdaqa
School of Computer Science
Reykjavik University, Iceland
{majd18, sigurdurhell$5, gisli, mhamdaqa} @ru.is

Abstract—Electronic voting (e-voting) plays a crucial role in
democratic countries. Unfortunately, implementing a trusted e-
voting system is always a challenge. Scholars have been trying to
propose solutions to improve e-voting systems. However, existing
e-voting approaches still need to adopt new technologies to
maintain their integrity and modernity. Unlike other technologies
that were used in e-voting, blockchain has the potential for
perfecting e-voting requirements and fostering trust in e-voting
systems. The first part of this paper presents a state-of-the-art
review of blockchain-based e-voting implementations. The second
part proposes a blockchain-based e-voting system (TrustVote).
TrustVote was realised using public and permissioned blockchain.
This work results show that the permissioned blockchain-based
implementation of TrustVote outperforms the identical version
of the same system that uses public blockchain. The results also
show that while several challenges and requirements still need to
be addressed, using permissioned blockchain for implementing
an e-voting system can help to satisfy many of the requirements
for e-voting and pave the road for a new generation of e-voting
systems that people can trust.

Index Terms—Electronic Voting, Blockchain, Smart Contracts,
Permissioned Blockchain, Hyperledger, Ethereum, Distributed
Ledger.

I. INTRODUCTION

Voting is an essential foundation for any modern democracy.
At present, e-voting is the main method used in national
elections in ten countries around the world. Moreover, 30
countries are in the process of implementing e-voting systems
to be used to elect national representatives [1]. Recent elec-
tions witnessed an increasing number of electronically cast
votes and people gradually started to have more faith in e-
voting systems. For instance, Figure 1 shows the number of
e-votes per election in Estonia (i.e., the first nation that legally
employed e-voting in general elections over the Internet), since
it was first introduced in 2005 [2].

Traditional voting systems have been criticized regularly for
being slow and inefficient. To resolve this, there has been a
high interest in employing electronic digital systems to assist
votes’ casting and counting, a process known as e-voting.
The first generation of e-voting systems was centralized.
These voting systems did not solve the trust problem, as
they depended on a centralized third party to aid, record,
and calculate votes. Moreover, these first-generation systems
lacked tractability, verifiability, integrity, and voters’ privacy.

978-1-7281-7091-6/20/$31.00 ©2020 IEEE

E-votes Counted

Year

Fig. 1. Number of e-votes per election [2].

The goal of this paper is to evaluate the feasibility of achiev-
ing trusted elections and e-voting systems through utilizing
blockchain as a service. In order to achieve the goal of this
paper, we start by surveying the available blockchain-based e-
voting systems. Based on the survey, critical e-voting require-
ments were extracted and listed. Finally, a proof-of-concept
e-voting system was implemented twice; first using a public
blockchain (i.e., Ethereum) and second using permissioned
blockchain (i.e., Hyperledger). The two implementations were
compared and a final remark was provided.

Contributions. This paper makes the following original con-
tributions:

1) A state-of-the-art review of blockchain-based e-voting
systems that we used as a base to identify require-
ments for e-voting systems.

2) An e-voting system (TrustVote) that takes the de-
fined requirements into consideration. We propose a
blockchain-based e-voting system named TrustVote. We
implemented the system twice; using public and permis-
sioned blockchain and compared the two alternatives.

Paper Outline. The remainder of this paper is organized as
follows. Section II presents a state-of-the-art review of the
existing blockchain-based e-voting systems. Section III shows
the design of TrustVote. Section IV explains the implemen-
tation of TrustVote. Section V presents the evaluation and
results. Finally, the conclusion is presented in Section VI

II. STATE OF THE ART REVIEW

In this section, a Systematic Literature Review (SLR) of
the related blockchain-based e-voting systems is presented.

176

After that, the main requirements of the e-voting systems are
collected and explained as they were listed in the literature.
Finally, the reviewed e-voting systems are compared based on
the explained requirements. Table I summarizes this compar-
ison.

A. Blockchain-based e-voting in the literature

Multiple blockchain-based voting systems were proposed in
the literature. In this review, we only include e-voting systems
that provide online elections based on Blockchain and smart
contracts.

TIVI [S]. An online voting system that depends on biomet-
ric authentication. Its design basically takes the advantages of
Blockchain technology, such as a ballot box and encryption
mechanisms. This solution requires a picture of the face of
the voter before casting a vote to check the voter identity. The
anonymity of voters is provided in the mixing phase. To count
the votes and tally the results in this system, a central party
is required to shuffle the encrypted votes and decouple the
voter’s real-world identity from their voting key. Therefore,
this solution uses the blockchain as an immutable database
only. In this work, it is shown that votes can be counted on
the blockchain without the need of any third party.

Agora voting system [7]. This solution has five phases.
First, the configuration phase in which the administrator starts
the election. Second, the voters fill and submit their ballots
in the casting phase. Voters cast their ballots to the Bulletin
Board. Third, the anonymization phase in which ballot casts
on the Bulletin Board are anonymized using Neff shuffling.
Fourth, the authorities decrypt the anonymized ballots and
publish them along with proof of decryption correctness.
Finally, the result is calculated and published on the Bulletin
Board. Comparing with TrustVote, our proposed system has a
simple architecture, and all of the calculations are done on the
fly in the smart contracts.

Open Vote Network (OVN) [8]. This online solution is
designed as a smart contract on Ethereum blockchain. It has
an administrator who authenticates the voters and sets-up the
election. Votes in this system are encrypted before casting,
which guarantees individual confidentiality. It also achieves
universal verifiability because it is a self-tallying solution. This
system only supports elections with two options (yes, no).
Furthermore, because of the mathematical tools that are used
in this system, the maximum allowed voters’ number is 50
and the system cannot scale more. Comparing with TrustVote,
our system is not limited to a specific number of voters.

Follow My Vote (FMYV) [6]. This system uses webcams
and government-issued IDs in the authentication phase. After
verifying voters’ identity, a third trusted party allows eligible
voters to cast their ballots. This system also allows voters to
change their vote casts in the future. It provides each eligible
voter with pass-phrases that are required when changing
votes. The ballots are stored in the blockchain. One primary
drawback of this system that it does not guarantee universal
verifiability. In this work, universal verifiability is guaranteed
and the uniqueness of votes is achieved.

Verify-Your-Vote (VYV) [4]. An online electronic voting
solution that uses cryptographic primitives based on Elliptic-
Curve Cryptography (ECC). VYV has several components,
including a trusted server that is used to register eligible voters
and authenticate them. It also has an external administrator
who owns an account that manages election parameters. Fi-
nally, it has a tallying authority with an externally owned
account. This solution has many tallying authorities as can-
didates to construct ballots and calculate the final election
result. This solution was modeled with the ProVerif tool in
order to formally prove some security features such as voters’
authentication. Compared with TrustVote, Blockchain is not
fully utilized in their system and they depend on a third party
to calculate the results.

BroncoVote [3]. A blockchain-based voting solution that
was proposed as a university-scaled framework. It also uti-
lizes smart contracts to manage voters. This system has
seven phases: (1) Initialization, in which the administrator
deploys both Registrar Smart Contract (RSC) and Creator
Smart Contract (CSC). RSC enables voters to register, and
the CSC creates voting contracts for the registered voters. (2)
Registration, in which only students and employees within
a whitelisted domain are allowed to be voters. (3) Ballot
creation, creator should send the ballot ID to all voters.
(4) Loading the ballot, voters can load the ballot using the
previously received ballot ID. (5) Voting phase, votes are
encrypted and sent to a voting contract. (6) All encrypted
votes are retrieved and (7) The results are published. This
system was deployed on Ethereum’s Testnet. Compared with
TrustVote, system evaluation in BroncoVote is done in terms
of gas cost per number of voting options, which does not show
the overall system performance.

BitCongress [9]. An online voting platform to prevent
double voting. It depends on Bitcoin Blockchain, Smart Con-
tract Blockchain, and Counterparty. In the registration phase,
it allows any Bitcoin address to register in the election;
hence, eligibility is not guaranteed. In the tallying phase,
if the election is of a large scale, it uses the Quota Borda
system. This platform depends on many external technologies,
while the same functionality can be achieved by utilizing
smart contracts. TrustVote system architecture is simpler and
achieves voters’ eligibility.

A Privacy Preserving e-Voting Protocol for Permissioned
Blockchain (DABSTERS) [10]. An e-voting protocol to
balance voters’ privacy and election transparency. It depends
on the BlindCons consensus algorithm. It has five phases, the
enrollment phase, in which verification of the eligibility of
voters is done offline by Election Authorities (EAs). In the
validation phase, the eligible voters’ list is validated on the
blockchain. Then, voters write their encrypted votes to the
transactions and send them to the EAs to blind the votes’
transactions. After blinding the transactions, they are sent to
the blockchain to be verified. After that, reading the votes
and tallying the results are done by the Tallying Authorities
(TAs). Finally, the verification phase, in which voters verify the
results. This work provides formal verification using ProVerif.

177

TABLE I
EVALUATION OF THE SURVEYED BLOCKCHAIN-BASED E-VOTING SYSTEMS

Requirement [3] [4] [5] [6] [7] [8] [9] [10] [11]
Flexibility Yes Yes Yes Yes Yes No Yes Yes Yes
Coercion-resistance No No No No No No No No No
Consistency Yes Yes Yes Yes Yes Yes Yes Yes Yes
Integrity Yes Yes Yes Yes Yes Yes Yes Yes Yes
Auditability Yes Yes Yes Yes Yes Yes Yes Yes Yes
Identity Verification Yes No No Yes Yes No Yes Yes No
Eligibility Yes Yes Yes Yes Yes No No Yes No
Voter Secrecy Yes Yes Yes No Yes Yes Yes Yes Yes
Tamper-resistance Yes Yes Yes Yes Yes Yes Yes Yes Yes
Uniqueness No No Yes No N/A Yes No No Yes
Universal Verifiability Yes Yes Yes No Yes Yes Yes Yes Yes
Individual Verifiability Yes Yes Yes Yes Yes Yes Yes Yes Yes

Compared with TrustVote, it is a prototype and does not pro-
vide any performance evaluation or implementation evaluation.
Smart contracts are used in TrustVote to replace the TAs.
Platform-independent Secure Blockchain-based Voting
System [11]. This system is implemented on Hyperledger

(i) Identity Verification. An election system should provide
secure authentication via an identity verification service.
Eligibility. An election system should only allow eligi-
ble individuals to vote in an election and prevent any
ineligible voters from voting.

(ii)

Fabric and depends on Paillier cryptosystem, proof of knowl- (iii) Voter Secrecy. An election system should not allow
edge consensus, and Ring Signatures for voters’ privacy. The tracing back from votes to respective voters.
eligibility of voters in this system is not achieved because (iv) Tamper-resistance. An election system should prevent

there is no registration phase. In addition, this system does
not guarantee coercion resistance. Compared with TrustVote,
their evaluation was only for the encryption and decryption

any third party from tampering with any vote.
(v) Uniqueness. An election system should accept one vote
from each voter and prevent any vote duplication.

algorithms, which does not show the overall system perfor- (vi) Universal Verifiability. Anyone who is included in the
mance. election has the ability to verify the whole election’s pro-

To summarize, we find that most of the surveyed e-voting cedure, results, and outcomes. This also includes specta-
systems (1) are using the blockchain as a database only to tors who can see the voting process on the blockchain.
record votes and (2) concerning the time spent in encryption (Vi) Individual Verifiability. An election system should al-

and decryption algorithms in their systems’ evaluation, which
does not reflect the whole system performance. TrustVote is
utilizing blockchain not only for storing votes in immutable
ledger but also for calculating votes, tallying, and publishing
the results without the need of a third party to publish the
results.

B. E-voting requirements and design considerations

The following list of requirements is explained for a viable
e-voting system to be effective and trusted. These critical
requirements are identified based on the presented review.

(1) Flexibility. An election should have the flexibility to

support ballots with various complexity of all poll types

such as (Multiple items selection, Yes/No voting, and

Priority voting)

Coercion-resistance. An election system should prevent

coerced voting.

Consistency. All voters in the election should have the

same voting procedure.

Integrity. E-voting system should assure the accuracy of

votes.

(v) Auditability. The voting procedure from the start of the
election to generating the results is auditable after the
election.

(i)
(iii)
(iv)

low any voter to verify that his/her vote is counted in the
final result of the election.

Table I shows an a comparison between the reviewed
blockchain-based e-voting systems based on the identified e-
voting requirements.

III. TRUSTVOTE SYSTEM DESIGN

In this section, an overview of TrustVote is provided, then
TrustVote’s design is explained, TrustVote’s smart contract is
defined, and the architecture of TrustVote system is presented.

A. TrustVote overview

TrustVote is a decentralized e-voting system that is based
on blockchain and smart contracts. The goal of TrustVote is
to facilitate managing electronic elections and to minimize
humans’ errors. A high level of TrustVote structure is provided
in Figure 2. It mainly consists of two types of nodes (i.e., Man-
agerial and District nodes), and depends on the government
identity identification service to authenticate voters. TrustVote
also depends on the administrators of the election to initialize
and create the Election Creation Smart Contract (ECSC) in
which the administrators initialize the aforementioned nodes
and the voters’ names. The rest is done by the smart contracts
and the blockchain. Next, all the components and processes
of TrustVote system are described in detail.

178

~
gi ‘{ P ‘
Administrator Peer Network
Government identity

identification service 3\‘.‘

Verity 4 | Initialization ;:“’
credentials

Managerial node 1

g =l °

- et 6 fo)

s Voting Lists

—1 =]

Authentication 3 o o Verify Vote L]

{ g 6 °

1 Smart Contract ~ L]

~ 5 (District node)
sign vote

N
8 S
= ol
Transaction 1D o

Voter Managerial

4 Node #n
Blockchain

Fig. 2. TrustVote structure and processes.

B. E-voting as a smart contract

One way to elaborate the design of a smart contract is
to depict it as a business process model that consists of the
contract roles, activities, and transactions.

1) Election Roles: The roles in TrustVote are explained as
follows:

(i) Election administrators: This role includes several
trusted organizations. They start the election process and
manage their life-cycle. Managing the election includes:
(1) Specifying the type of the election, (2) Creating the
election, (3) Determining the lifetime of the election, and
(4) Assigning the permissioned nodes (i.e., the District
and Managerial nodes).

(i1) Voters: Voters are the eligible participants for specific
elections. Voter role includes: (1) Self-authentication at
the beginning of the voting process, (2) Casting a vote,
and (3) Verifying the cast vote after the election is over.

(iii) District node: In this system, each voting district is
considered a district node that has a software agent to
interact with the private blockchain and manage the smart
contracts on that node. Once an election is created, one
ballot asset is distributed for each registered district node.
Permission to interact with the ballots is granted for each
corresponding district nodes when the ballot assets are
created.

(iv) Managerial node: Each institution, with permissioned
access to the network, hosts a managerial node. A man-
agerial node provides the same blockchain functionality
as a district node but does not allow for voting through
it. These nodes ensure blockchain integrity verification.
All of them can individually tally and verify results.

2) Election Process: The election process is represented as

a set of transactions. This work’s proposed election process is

divided into four main activities as follows:

(1) Election creation: Election administrators start the pro-
cess by creating election ballots. Then, administrators
define the Election Creation Smart Contract (ECSC).
This ECSC contains the list of all candidates and all
voting districts. After that, a set of Ballot Smart Contracts
(BSCs) are created and deployed on the blockchain by
the ECSC. These BSCs contains the list of candidates for
each voting district. Therefore, each BSC includes the
corresponding voting district as a parameter in it. Figure
3 shows the election as a smart contract in TrustVote.

(i) Voter registration: Voters’ registration is done by the
administrators. Defining a deterministic list of eligible
voters is the first thing that administrators should do
when they create an election. In TrustVote, voters are
authenticated and authorized via a government identity
verification service. For each eligible voter, a correspond-
ing card is created using the voter electronic ID, PIN,
and the voting district the voter belongs to. Voters then
can retrieve the cards electronically with a One-Time
Password (OTP) login with those entities.

(iii) Tallying results: Tallying results in TrustVote is done on
the fly in the smart contracts. Each BSC tally votes and
store its tallying in its own storage for the corresponding
districts only. Finally, each BSC publishes the final
result for their corresponding districts when the election
lifetime is over.

(iv) Verifying vote: TrustVote sends the transaction ID of
each vote to his/her corresponding owner so that the voter
can verify that his/her vote was counted and correctly
counted. Each voter, who wants to verify his/her own
vote, can go to the government authority in which he/she
should verify his/her identity using his/her electronic ID
and its corresponding PIN. Then he/she should present
his/her transaction ID so that the government authority
can search his/her transaction ID on the blockchain. This
can be easily done using a blockchain explorer to locate
the transaction with the corresponding transaction ID.

3) Election transactions: transactions are the third essential

components to define a smart contract. Each vote is stored as
a transaction on the private blockchain if it reaches consensus.
Each transaction has an ID that is sent to the corresponding
voter after his/her vote is recorded in the blockchain. Receiving
the transaction ID will help the voter to verify his/her vote.
Besides the ID, each transaction has all the information about
the vote, such as the location where the vote was cast and
whom was voted for. Each vote transaction can only be
appended onto the blockchain by its corresponding ballot
smart contract if all the nodes in the corresponding district
agreed upon the correctness and verification of the transaction
data.

C. TrustVote Process

An example of an election in this system is as follows:

1) Eligible voters can use any computer in the corresponding
voting district to cast their votes as the One-Time Password
(OTP) for the corresponding voter has information about

179

2)

3)

4)

5)

Election creation contract

~
A

Administrator

| \oting Nodes
-Candidates
Create

Generate

Crrm
Crrm
(ww]
=

Corm & Coom
o (¢ ‘) om
o © Y ooam

Ballot Asset #n

-Voting Node #n

-Candidates belong
to node #n
- Proposals

mam] / i
e Create transaction
(=]

Block of trinsactions

©
Qe
©

Validation

Add

4 PPy

Blockchain

Fig. 3. Election as a smart contract.

the voter such as his/her electronic ID, PIN, and corre-
sponding voting district. Furthermore, each voter also has
to present his/her ID and PIN at the voting district.

After successful authentication, the corresponding smart
contract is automatically called, and the election ballots
are displayed to the voter. These election ballots represent
the items that the voter can vote on. After the voter finishes
his/her voting selection, then the selected vote should be
signed using the voter OTP.

Then the signed vote transaction is verified by the corre-
sponding district node, from which the voter is interacting
with the smart contract. If the vote transaction was verified,
then the aforementioned district node transfers the verified
vote transaction to other district nodes to be verified by
their consensus algorithm. After the vote transaction is
verified by all district nodes, it will be recorded on the
private blockchain.

Consensus for a specific vote transaction is reached only
if the majority of district nodes agreed on the correct-
ness of the vote data. After that, the voter receives the
transaction ID for the corresponding verified and counted
transaction of his/her vote. This transaction ID is sent to
the corresponding voter in a form of QR-code. Then, the
smart contract functionality will add the verified vote to
the given ballot and denies the voter from voting again. In
the end, the functionality of the smart contract is employed
to generate the election result when the election lifetime is
over and for each voting district. All of these steps are
visually presented in Figure 2.

Verified transactions that were received before the time
limit of the ongoing block has been reached, will be added
to the block and when the time limit of the block is reached
then it will be appended to the blockchain. After that, the

new coming verified transactions will be added to a new
block and so on.

IV. TRUSTVOTE SYSTEM IMPLEMENTATION

This section focuses on the implementation details for
TrustVote system. The same system was implemented on
public blockchain; namely, Ethereum and on permissioned
blockchain; namely, Hyperledger fabric. To limit any coerced
voting, voters in TrustVote will have to vote in a supervised
environment.

A. TrustVote implementation on Hyperledger

The model components of this work implementation from
both Hyperledger Fabric and Chaincode is described as
follows.

1) System model: TrustVote model contains the following:
Orderer (O): Is the entity from Hypeledger Fabric that
handles consensus, and orders the events that happened on the
blockchain correctly. This work implementation uses Apache
Kafka' to set up a multinode cluster. Moreover, Apache
Zookeeper® is used to manage the cluster nodes to enable
highly reliable distributed coordination.

Peer (P): Is another entity from Hyperledger Fabric, which
handles sending and receiving transactions to the blockchain
and from other peers. Peers maintain the validity of the
blockchain by validating the actions of other peers.
Certificate Authority (C' A): The last entity from Hyperledger
Fabric which is utilized. This node handles the construction
and verification of participants on the blockchain, using stan-
dard PKI® methods.

Managerial Nodes(/N,): Are nodes that participate in con-
sensus and maintain the integrity of the blockchain; they do
so by hosting both a P and an O.

District Nodes (/Np): Behave exactly like N, but also serve
the role of allowing voters to cast votes on ballots.

Next, we will elaborate on the models and functionalities
of a novel ballot and election smart contract for the proposed
election as a smart contract, without the integration of a
government identity verification service.

2) System Implementation: As stated earlier this section we
used Fabric, and Hyperledger Composer to implement this
system. In order to develop smart contracts in Composer, struc-
tures were created of the three classes, which are Participants,
Assets, and Transactions. Participants are actors that interact
with the smart contract. Assets are the logical entities that
participants can own and trade with other participants. Lastly,
the Transactions are the methods the participants utilize to
move assets between themselves. For this implementation, the
next concepts were created.

Participants: Person that is a representation of the voters
in the system they belong to some district, District which

'https://kafka.apache.org/
Zhttps://zookeeper.apache.org/
3Public Key Infrastructure

180

holds the ballots the voters vote on, and lastly Election
Administrators that represent the people who initiate elections.
Assets: Election representing an ongoing election, it has some
election administrator and a number of ballots. A ballot is
owned by a district and has a number of proposals. Lastly
Proposal, which has a description of the matter being voted
on, the date when it was created, and a count of how many
votes this proposal has.
Transactions: Vore, this transaction is called by voters refer-
encing a given proposal, and createElection which is called
by election administrators, and has a series of items that will
be voted on.

Listing 1 shows the Assets in the system Business Network
Archive (BNA) file that was created for TrustVote.

asset Election identified by electionld ({
o String electionld

o Ballot[] ballots

}
asset Ballot identified by ballotld ({
o String ballotld

o Proposal[] proposals

——> Person chairperson

—> District votingDistrict

}
asset Proposal identified by proposalld ({
o String proposalld

o String description

o Integer voteCount

o DateTime creationDate

}

const registry = await getAssetRegistry (
orgNamespace + ’.Election’)

const factory = getFactory ()

identificaiton

let newElection = factory.newResource(
orgNamespace, 'Election’, uuid())
newElection. ballots = []

let date = new Date ()

await getAllDistricts ().then((districts) => {
districts .forEach ((district) => {
let newBallot = factory.newResource(
orgNamespace, 'Ballot’, uuid())
newBallot.chairperson = createElection.
creator

newBallot. votingDistrict = district
newBallot. proposals = []
createElection .items . forEach ((item) => {
let newProposal = factory.newResource(
orgNamespace , ’'Proposal’, uuid())
newProposal. description = item
newProposal . voteCount = 0
newProposal . creationDate = date
newBallot. proposals.push(newProposal)
P

newElection. ballots .push(newBallot)

P

9]

await registry .add(newElection)

Listing 2. ECSC functionality in Hyperledger.

Listing 1. TrustVote BNA file on Hyperledger.

B. TrustVote implementation on Etherum

The same underlying functions were implemented as in
TrustVote Hyperledger, but using Solidity and smart contracts.
The next Listings show the main functionalities that were
implemented.

Election Creation Smart Contract (ECSC) functionality:
Takes in a list of candidates and districts along with the address
of the wallet of the creator and the number of hours the
election will take. The contract then creates a single smart
contract for each district provided and puts the address of
each smart contract created into the deployed Ballots array.
ECSC functionality is shown in Listing 2 and Listing 3 in
both Hyperledger and Ethereum consecutively.

Ballot Smart Contract (BSC) functionality: Which sets the
manager of the ballot smart contract by default to the address
of the wallet which created the election, the voting district of
the smart contract to the district which the ECSC provided
and then proceeds to fill the Candidates struct with the list
of candidates provided and the number of votes for each
candidate to 0. The BSC also stores the time of the creation
of the contract along with the time when the contract is to
expire, as shown in Listing 4. The same functionality was
implemented using Hyperledger Chaincode.

async function createElection(createElection)

{

181

function createElection(createElection)|
const registry =
await getAssetRegistry (orgNamespace +
! .Election’)
const factory = getFactory ()
let newElection =
factory.newResource (orgNamespace ,
"Election’, uuid())
newElection. ballots =
let date = new Date ()
await getAllDistricts ().then((districts)
=>{ districts .forEach((district) => {
let newBallot =
factory.newResource (orgNamespace ,
"Ballot’ . uuid())
newBallot. chairperson =
createElection. creator
newBallot. votingDistrict = district
candidate in each ballot
newBallot. proposals = []
createElection. items. forEach ((item)
=> | let newProposal =
factory .newResource (orgNamespace ,
"Proposal’, uuid())

[l

newProposal . description = item
newProposal.voteCount = 0
newProposal. creationDate = date

newBallot. proposals. push(newProposal)

1)

newElection. ballots.push(newBallot) })

1)

await registry .add(newElection)}

Listing 3. ECSC functionality in Etherum.

Casting a vote: It allows voters to vote. The requirement for
a voter to vote is that the mapping of the address of the voter
is set to its default, false. If that is the case, the function
guarantees that the election time limit has not been reached. If
both requirements are satisfied, the contract retrieves the index
of which candidate was voted for and increases his vote count
by one and sets the mapping to true, so that the voter can never
vote again in this particular election as shown in Listing 4 and
Listing 5. Similar functionality was implemented in Ethereum.

struct Candidates |
bytes32 name;

uint voteCount;

uint creationDate :
uint expirationDate :}

Candidates|[] public candidates;
address public manager:

bytes32 public votingDistrict;
mapping (address => bool) public voters;
modifier restricted () |
require (msg. sender == manager):

_i

constructor (bytes32[] candidateNames ,
bytes32 district , address creator ,
uint amountOfHours) public {

manager = creator:

votingDistrict = district:

for (uint 1 = 0;

i < candidateNames.length: i++) |

candidates . push(Candidates (|
name: candidateNames][i].

voteCount: 0,
creationDate :
expirationDate :

now .
now + amountOfHours

D))

Listing 4. BSC functionality.

async function vote(vote) |

let proposal = vote.proposal

let voter = vote.voter

if (voter.alreadyVoted.includes(proposal.

proposalld)) |
throw new Error("Already
— -_._:\l,") }

time_elapsed = (Date.now() — proposal.

creationDate) / 1000

if (time_elapsed > 30) {

throw new Error("Proposal has timed out.")]

proposal.voteCount += |1

voter. alreadyVoted . push(proposal. proposalld)

const personRegistry = await getAssetRegistry
(orgNamespace + ' .Ferson’)

await personRegistry.update(voter)

const proposalRegistry = awail
getAssetRegistry (orgNamespace + ' .Pr
)

await

this

voted on

var

proposalRegistry .update (proposal)}

Listing 5. Casting a vote in TrustVote.

V. EVALUATION AND RESULTS

In this section, TrustVote is evaluated in two ways. First, we
evaluate the two implementations of TrustVote, by comparing

the transaction execution time and second, by validating this
system adherence to the requirements in Section V-B.

A. Experimental evaluation

In this evaluation, the impact of the implementation decision
is studied, whether it is on public or permissioned blockchain,
on the performance of TrustVote. Particularly, the performance
is compared in terms of the execution time of key functions
of the system, such as creating an election.

1) Hyperledger Fabric Setup: To evaluate the performance
of this work implementation on a permissioned blockchain
we started a local Hyperledger fabric blockchain was started,
using a single laptop with Ubuntu 18.04, 16Gb of RAM,
Intel 17-7600u running at 3.9GHz. The blockchain hosted
a single smart-contract. The Hyperledger fabric components,
that were described before, were all dockerized, and they were
as follows, 2 peers, 2 orderers, 4 kafkas, 3 zookeepers, and 1
certificate authority. Hyperledger fabric version 1.4 was used.
For all tests, an election with 5 districts was used, and with
20 items in an election.

2) Ethereum Setup: In order to setup Ethterum, we used the
same underlying functions within TrustVote but using Solidity.
We also used the same machine as when testing the Fabric
system and we setup a local Ethereum testnet within the
development framework Truffle*. For all tests, we used an
election which has 5 districts, and 20 items in an election.

3) Experimental Results: The execution time for TrustVote
main functions was measured on both Ethereum and Hyper-
ledger using the aforementioned private setup. Figure 4 shows
the results of the main functions in TrustVote; namely, (1)
Election creation, (2) Casting a vote, and (3) Tallying votes.
The results show that the permissioned blockchain performs
with respect to time better than public blockchains in all of
these three functions. Thus, permissioned blockchain should
scale better as the number of participants increases.

SmartVoting Evaluation
9
8
« 7
2
8 6
‘501 5
£ 4
g 3
= 2
X . i
0 Electi
ection . .
Creation Voting Tallying Votes
 Hyperledger Fabric 2 1,3 0,06
Ethereum 8 8,1 1,1

Fig. 4. TrustVote transaction execution time on two blockchain frameworks.

“https://github.com/trufflesuite/truffle

182

TABLE II
REQUIREMENTS OF TRUSTVOTE

Requirement Met | Description

Flexibility Yes Dependent on each smart-contracts functionality.

Coercion-resistance No ‘We only limited it by introducing a supervised environment at a voting center to cast their vote.

Consistency Yes This is guaranteed from using the blockchain.

Integrity Yes This is guaranteed from using the blockchain.

Auditability Yes This is guaranteed from using the blockchain and that we share the vote transaction ID with the
corresponding voter so any voter can audit the process that his/her vote went through.

Identity Verification Yes The card system of Fabric is issued based on the electronic ID and PIN of each participant so their
identity is confirmed using the card .

Eligibility Yes In order to perform transaction on TrustVote, a voter must first acquire a card for encryption/decryption.
besides, eligible voters’ lists are first generated and deployed with each district smart contract. Hence, if
a voter is identified and he/she is not in the eligible list, he/she is not allowed to vote.

Voter Secrecy No In the blockchain one can read the history of a single vote to an identifier of a voter, this could be a
random key and therefore be pseudonymous but not fully anonymous

Tamper-resistance Yes This property is provided by the blockchain

Uniqueness Yes This is provided via using OTP cards and after casting the first vote, the voter will be prevented by our
system to vote again. Only one vote is accepted from each voter.

Universal Verifiability Yes All entities that have access to the Fabric can read the history, this can be multiple trusted organizations.

Individual Verifiability No This can be fulfilled by a public API hosted by one of the institutions maintaining the Fabric. Besides,
since we are sharing the voter transaction ID with the corresponding voter, he/she can still use the API
to trace his/her vote and verify that his/her vote was counted correctly.

B. Requirement mapping

We validated TrustVote conformance to the requirements

outlined in Section II-B, to check if this system fulfills these
requirements. Table II. shows that TrustVote meets most of
the requirements. Two requirements (i.e., Voter Secrecy and
Coercion-resistance) are not achieved. We proposed solutions
for these unsatisfied requirements in the same table.
Final remark. Employing TrustVote in elections will re-
sult in overall better governance through supporting liquid
democracy [12] and maintaining trust between the citizens
and the governance. TrustVote also uses modern technologies
(i.e., Blockchain and Smart Contracts), which can speed up
the process of voting, limit the need to queue up at polling
stations and the chance to follow an insufficient voting process.
Moreover, implementing TrustVote in actual elections will not
require governments to fully rebuild their systems, but re-
model the available resources and systems to fit TrustVote
technologies. Still, implementing TrustVote introduces the
transparency in the election process, which might need to be
addressed in new laws that provide regulations on implement-
ing such transparency methods in official elections.

VI. CONCLUSION

In this paper, a state-of-the-art review of blockchain-based
e-voting solutions is presented. Based on the survey, we
identified a set of essential requirements that an e-voting
system should satisfy. This paper also proposed an e-voting
system (TrustVote) that was realised twice; using Hyper-
ledger permissioned blockchain, and using Ethereum public
blockchain. To evaluate TrustVote, first, we compared the two
implementations of TrustVote based on the execution time of
the different transactions. Then, we validated TrustVote against
the defined requirements. This paper evaluation results showed
that utilizing private permissioned blockchain for implement-
ing e-voting systems can address many of the challenges

and satisfy many of the requirements of e-voting systems.
Particularly, private and permissioned blockchain solutions
have the advantage of better performance in terms of the
number and execution time of transactions and adhere better
to privacy and governance constraints.

REFERENCES

[1] R. M. Alvarez, G. Katz, and J. Pomares, “The impact of new tech-
nologies on voter confidence in latin america: Evidence from e-voting
experiments in argentina and colombia,” Journal of Information Tech-
nology & Politics, vol. 8, no. 2, pp. 199-217, 2011.

[2] Valimised, “Statistics about internet voting in estonia,” Available at
https://www.valimised.ee/en/archive/statistics-about-internet-voting-
estonia.

[3] G. G. Dagher, P. B. Marella, M. Milojkovic, and J. Mohler, “Broncovote:
Secure voting system using ethereum’s blockchain,” in Proceedings of
the 4th International Conference on Information Systems Security and
Privacy, ICISSP 2018, Funchal, Madeira - Portugal, January 22-24,
2018, P. Mori, S. Furnell, and O. Camp, Eds. SciTePress, 2018, pp.
96-107.

[4] M. Chaieb, S. Yousfi, P. Lafourcade, and R. Robbana, “Verify-your-vote:
A verifiable blockchain-based online voting protocol,” in EMCIS, ser.
Lecture Notes in Business Information Processing, M. Themistocleous
and P. R. da Cunha, Eds., vol. 341. Springer, 2018, pp. 16-30.

[5] Smartmatic, “Tivi: Accessible and verifiable online voting,” Available at
http://www.smartmatic.com/voting/online-voting-tivi/.

[6] “Follow my vote,” Available at https://followmyvote.com.

[7]1 “Agora: Bringing our voting systems into the 21st century,” agora.vote,
p. 46, 2017.

[8] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for
boardroom voting with maximum voter privacy,” IACR Cryptology
ePrint Archive, vol. 2017, p. 110, 2017.

[9] “Bit congress,” Available at http://cryptochainuni.com/wp-

content/uploads/ BitCongress-Whitepaper.pdf.

M. Chaieb, M. Koscina, S. Yousfi, P. Lafourcade, and R. Robbana,

“Dabsters: A privacy preserving e-voting protocol for permissioned

blockchain,” in International Colloquium on Theoretical Aspects of

Computing. Springer, 2019, pp. 292-312.

B. Yu, J. K. Liu, A. Sakzad, S. Nepal, R. Steinfeld, P. Rimba, and M. H.

Au, “Platform-independent secure blockchain-based voting system,” in

International Conference on Information Security. Springer, 2018, pp.

369-386.

F. b. Hjdlmarsson, G. K. Hreidarsson, M. Hamdaqa, and G. Hjdlmtysson,

“Blockchain-based e-voting system,” in 2018 IEEE 1l1th International

Conference on Cloud Computing (CLOUD). IEEE, 2018, pp. 983-986.

[10]

(11]

[12]

183

